The digestive system processes food so that it can be absorbed and used by the body's cells. The digestive organs are responsible for food ingestion, digestion, absorption, and elimination of undigested remains from the body. In one sense, the digestive tract can be viewed as a disassembly line in which food is carried from one stage of its breakdown process to the next by muscular activity, and its nutrients are made available en route to the cells of the body. In addition, the digestive system provides for one of life's greatest pleasures—eating.

The anatomy of both alimentary canal and accessory digestive organs, mechanical and enzymatic breakdown, and absorption mechanisms are covered in this chapter. An introduction to nutrition and some important understandings about cellular metabolism (utilization of foodstuffs by body cells) are also considered in this chapter review.

ANATOMY OF THE DIGESTIVE SYSTEM

1. Complete the following statements by inserting your answers in the answer blanks.

1. The digestive system is responsible for many body processes. Its functions begin when food is taken into the mouth, or ___________. The process called ___________ occurs as food is broken down both chemically and mechanically. For the broken-down foods to be made available to the body cells, they must be absorbed through the digestive system walls into the ___________.

2. Undigestible food remains are removed, or ___________, from the body in ___________. The organs forming a continuous tube from the mouth to the anus are collectively called the ___________.

3. Organs located outside the digestive tract proper, which secrete their products into the digestive tract, are referred to as ___________ digestive system organs.
2. Figure 14–1 is a frontal view of the digestive system. First, correctly identify all structures provided with leader lines. Then select different colors for the following organs and color the coding circles and the corresponding structures of the figure.

- Esophagus
- Liver
- Large intestine
- Pancreas
- Salivary glands
- Small intestine
- Tongue
- Uvula

Figure 14–1
3. Figure 14–2 illustrates oral cavity structures. First, correctly identify all structures provided with leader lines. Then color the structure that attaches the tongue to the floor of the mouth red; color the portions of the roof of the mouth unsupported by bone blue; color the structures that are essentially masses of lymphatic tissue yellow; and color the structure that contains the bulk of the taste buds pink.

![Figure 14–2](image)

4. Various types of glands secrete substances into the alimentary tube. Match the glands listed in Column B to the functions/locations described in Column A. Place the correct term or letter response in the answer blanks.

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Produce an enzyme-poor “juice” containing mucus; found in the submucosa of the small intestine</td>
<td>A. Gastric glands</td>
</tr>
<tr>
<td>2. Secretion includes amylase, which begins starch digestion in the mouth</td>
<td>B. Intestinal glands</td>
</tr>
<tr>
<td>3. Ducts a variety of enzymes in an alkaline fluid into the duodenum</td>
<td>C. Liver</td>
</tr>
<tr>
<td>4. Produces bile, which is transported to the duodenum via the bile duct</td>
<td>D. Pancreas</td>
</tr>
<tr>
<td>5. Produce hydrochloric acid and pepsinogen</td>
<td>E. Salivary glands</td>
</tr>
</tbody>
</table>
5. Using the key choices, select the terms identified in the following descriptions by inserting the appropriate term or letter in the answer blanks.

Key Choices

<table>
<thead>
<tr>
<th>Key</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Anal canal</td>
<td>J. Mesentery</td>
</tr>
<tr>
<td>B. Appendix</td>
<td>K. Microvilli</td>
</tr>
<tr>
<td>C. Colon</td>
<td>L. Oral cavity</td>
</tr>
<tr>
<td>D. Esophagus</td>
<td>M. Parietal peritoneum</td>
</tr>
<tr>
<td>E. Greater omentum</td>
<td>N. Peyer's patches</td>
</tr>
<tr>
<td>F. Hard palate</td>
<td>O. Pharynx</td>
</tr>
<tr>
<td>G. Haustra</td>
<td>P. Plicae circulares</td>
</tr>
<tr>
<td>H. Ileocecal valve</td>
<td>Q. Pyloric sphincter (valve)</td>
</tr>
<tr>
<td>I. Lesser omentum</td>
<td>R. Rugae</td>
</tr>
</tbody>
</table>

1. Structure that suspends the small intestine from the posterior body wall
2. Fingerlike extensions of the intestinal mucosa that increase the surface area
3. Collections of lymphatic tissue found in the submucosa of the small intestine
4. Folds of the small intestine wall
5. Two anatomical regions involved in the physical breakdown of food
6. Organ that mixes food in the mouth
7. Common passage for food and air
8. Three extensions/modifications of the peritoneum
9. Literally a food chute; has no digestive or absorptive role
10. Folds of the stomach mucosa
11. Saclike outpocketings of the large intestine wall
12. Projections of the plasma membrane of a cell that increase the cell's surface area

13. Prevents food from moving back into the small intestine once it has entered the large intestine

14. Organ responsible for most food and water absorption

15. Organ primarily involved in water absorption and feces formation

16. Area between the teeth and lips/cheeks

17. Blind sac hanging from the initial part of the colon

18. Organ in which protein digestion begins

19. Membrane attached to the lesser curvature of the stomach

20. Organ into which the stomach empties

21. Sphincter, controlling the movement of food from the stomach into the duodenum

22. Uvula hangs from its posterior edge

23. Organ that receives pancreatic juice and bile

24. Serosa of the abdominal cavity wall

25. Region, containing two sphincters, through which feces are expelled from the body

26. Anterosuperior boundary of the oral cavity; supported by bone
6. Figure 14–3A is a longitudinal section of the stomach. First, use the following terms to identify the regions provided with leader lines on the figure.

- Body
- Pyloric region
- Greater curvature
- Cardiöesophageal valve
- Fundus
- Pyloric valve
- Lesser curvature

Then select different colors for each of the following structures/areas and use them to color the coding circles and corresponding structures/areas on the figure.

- Oblique muscle layer
- Longitudinal muscle layer
- Circular muscle layer
- Area where rugae are visible
- Serosa

Figure 14–3B shows two types of secretory cells found in gastric glands. Color the hydrochloric acid–secreting cells red and color the cells that produce protein-digesting enzymes blue.

7. Circle the term that does not belong in each of the following groupings.

1. Nasopharynx Esophagus Laryngopharynx Oropharynx
2. Villi Plicae circulares Rugae Microvilli
3. Salivary glands Pancreas Liver Gallbladder
4. Duodenum Cecum Jejunum Ileum
5. Ascending colon Hausta Circular folds Cecum
6. Mesentery Frenulum Greater omentum Parietal peritoneum
7. Parotid Sublingual Submandibular Palatine
8. Protein-digesting enzymes Saliva Intrinsic factor HCl
9. Colon Water absorption Protein absorption Vitamin B absorption
Figure 14-3
8. The walls of the alimentary canal have four typical layers, as illustrated in Figure 14-4. Identify each layer by placing its correct name in the space before the appropriate description. Then select different colors for each layer and use them to color the coding circles and corresponding structures on the figure. Finally, assume the figure shows a cross-sectional view of the small intestine and label the three structures provided with leader lines.

- The secretory and absorptive layer
- Layer composed of at least two muscle layers
- Connective tissue layer, containing blood, lymph vessels, and nerves
- Outermost layer of the wall; visceral peritoneum

Figure 14-4
9. Figure 14–5 shows three views of the small intestine. First, label the villi in views B and C and the plicae circulares in views A and B. Then select different colors for each term listed below and use them to color in the coding circles and corresponding structures in view C.

- Surface epithelium
- Lacteal
- Capillary network

![Figure 14-5](image)
10. Three accessory organs are illustrated in Figure 14-6. Identify each of the three organs and the ligament provided with leader lines on the figure. Then select different colors for the following structures and use them to color the coding circles and the corresponding structures on the figure.

- O Common hepatic duct
- O Cystic duct
- O Bile duct
- O Pancreatic duct

![Figure 14-6](image-url)

11. Complete the following statements referring to human dentition by inserting your answers in the answer blanks.

1. The first set of teeth, called the (1) teeth, begin to appear around the age of (2) and usually have begun to be replaced by the age of (3). The (4) teeth are more numerous; that is, there are (5) teeth in the second set as opposed to a total of (6) teeth in the first set. If an adult has a full set of teeth, you can expect to find two (7), one (8), two (9), and three (10) in one side of each jaw. The most posterior molars in each jaw are commonly called (11) teeth.
12. First, use the key choices to label the tooth diagrammed in Figure 14–7. Second, select different colors to represent the key choices and use them to color in the coding circles and corresponding structures in the figure. Third, add labels to the figure to identify the crown, gingiva, and root of the tooth.

Key Choices

- A. Cementum
- B. Dentin
- C. Enamel
- D. Periodontal membrane (ligament)
- E. Pulp

![Figure 14–7](image1.png)
FUNCTIONS OF THE DIGESTIVE SYSTEM

13. Match the descriptions in Column B with the appropriate terms referring to digestive processes in Column A.

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ingestion</td>
<td>A. Transport of nutrients from lumen to blood</td>
</tr>
<tr>
<td>2. Propulsion</td>
<td>B. Enzymatic breakdown</td>
</tr>
<tr>
<td>3. Mechanical digestion</td>
<td>C. Elimination of feces</td>
</tr>
<tr>
<td>4. Chemical digestion</td>
<td>D. Eating</td>
</tr>
<tr>
<td>5. Absorption</td>
<td>E. Chewing</td>
</tr>
<tr>
<td>6. Defecation</td>
<td>F. Churning</td>
</tr>
<tr>
<td></td>
<td>G. Includes swallowing</td>
</tr>
<tr>
<td></td>
<td>H. Segmentation and peristalsis</td>
</tr>
</tbody>
</table>

Key Choices

A. Bicarbonate-rich fluid
B. Bile
C. Brush border enzymes
D. Chewing
E. Churning

14. This section relates to food breakdown in the digestive tract. Using key choices, select the appropriate terms to complete the following statements. Insert the correct letter or term in the answer blanks.

1. Starch digestion begins in the mouth when (1) is ducted in by the salivary glands.

2. Gastrin, which prods the stomach glands to produce more enzymes and HCl represents a (2).

3. The fact that the mere thought of a relished food can make your mouth water is an example of (3).

4. Many people chew gum to increase saliva formation when their mouth is dry. This type of stimulus is a (4).

5. Protein foods are largely acted on in the stomach by (5).
6. For the stomach protein-digesting enzymes to become active, \((______) \) is needed.

7. Since living cells of the stomach (and everywhere) are largely protein, it is amazing that they are not digested by the activity of stomach enzymes. The most important means of stomach protection is the \((______) \) it produces.

8. A milk protein-digesting enzyme found in children but uncommon in adults is \((______) \).

9. The third layer of smooth muscle found in the stomach wall allows mixing and mechanical breakdown by \((______) \).

10. Important intestinal enzymes are the \((______) \).

11. The small intestine is protected from the corrosive action of hydrochloric acid in chyme by \((______) \), which is ducted in by the pancreas.

12. The pancreas produces protein-digesting enzymes, amylase, and nucleases. It is the only important source of \((______) \).

13. A nonenzyme substance that causes fat to be dispersed into smaller globules is \((______) \).

15. Identify the pathologic conditions described below by using terms from the key choices. Insert the correct term or letter in the answer blanks.

Key Choices

A. Appendicitis
B. Constipation
C. Diarrhea
D. Gallstones
E. Heartburn
F. Jaundice
G. Peritonitis
H. Ulcer

1. Inflammation of the abdominal serosa

2. Condition resulting from the reflux of acidic gastric juice into the esophagus

3. Usually indicates liver problems or blockage of the biliary ducts

4. An erosion of the stomach or duodenal mucosa

5. Passage of watery stools

6. Causes severe epigastric pain; associated with prolonged storage of bile in the gallbladder

7. Inability to pass feces; often a result of poor bowel habits
16. Hormonal stimuli are important in digestive activities that occur in the stomach and small intestine. Using the key choices, identify the hormones that function as described in the following statements. Insert the correct term or letter response in the answer blanks.

Key Choices

A. Cholecystokinin
B. Gastrin
C. Secretin

1. These two hormones stimulate the pancreas to release its secretions.
2. This hormone stimulates increased production of gastric juice.
3. This hormone causes the gallbladder to release stored bile.
4. This hormone causes the liver to increase its output of bile.

17. Various types of foods are ingested in the diet and broken down to their building blocks. Use the key choices to complete the following statements according to these understandings. Insert the correct term or letter in the answer blanks. In some cases, more than one choice applies.

Key Choices

A. Amino acids
B. Fatty acids
C. Fructose
D. Galactose
E. Glucose
F. Lactose
G. Maltose
H. Starch
I. Sucrose

1. The building blocks of carbohydrates are monosaccharides, or simple sugars. The three common simple sugars in our diet are , , and .
2. Disaccharides include , , and .
3. Protein foods must be digested to before they can be absorbed.
4. Fats are broken down to two types of building blocks, and glycerol.
5. Of the simple sugars, is most important because it is the sugar referred to as "blood sugar."
18. Dietary substances capable of being absorbed are listed next. If the substance is *most often* absorbed from the digestive tract by active transport processes, put an *A* in the blank. If it is usually absorbed passively (by diffusion or osmosis), put a *P* in the blank. In addition, circle the substance that is *most likely* to be absorbed into a lacteal rather than into the capillary bed of the villus.

- 1. Water
- 2. Amino acids
- 3. Simple sugars
- 4. Fatty acids
- 5. Electrolytes

19. Complete the following statements that describe mechanisms of food mixing and movement. Insert your responses in the answer blanks.

1. Swallowing, or *(1)*, occurs in two major phases—the *(2)* and *(3)*. During the voluntary phase, the *(4)* is used to push the food into the throat, and the *(5)* rises to close off the nasal passageways. As food is moved involuntarily through the pharynx, the *(6)* rises to ensure that its passageway is covered by the *(7)*, so that ingested substances do not enter respiratory passages. It is possible to swallow water while standing on your head because the water is carried along the esophagus involuntarily by the process of *(8)*. The pressure exerted by food on the *(9)* valve causes it to open so that food can enter the stomach.

2. The two major types of movements that occur in the small intestine are *(10)* and *(11)*. One of these movements, the *(12)*, acts to continually mix the food with digestive juices, and (strangely) also plays a major role in propelling foods along the tract. Still another type of movement seen only in the large intestine, *(13)*, occurs infrequently and acts to move feces over relatively long distances toward the anus. Presence of feces in the *(14)* excites stretch receptors so that the *(15)* reflex is initiated. Irritation of the gastrointestinal tract by drugs or bacteria might stimulate the *(16)* center in the medulla, causing *(17)*, which is essentially a reverse peristalsis.